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Multiple hypothesis tracking (MHT) addresses difficult associa-
tion problems in multiple target tracking by forming and evaluating
data association hypotheses with multiple scans or frames of data.
This paper reviews 40 years of MHT research and development since
publication of the measurement-oriented MHT journal paper in 1979.
It covers hypothesis-oriented and track-oriented MHT, distributed
MHT, graph-based association, other MHT research, and the relation-
ship with multitarget filters using random finite sets. It also reviews use

of MHT in surveillance and other applications.
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I.  INTRODUCTION

Data association is a key component of multiple tar-
get tracking (MTT) [1]-[10]. In fact, early papers [11],
[12] in MTT frequently include “association” or “corre-
lation” in their titles. The need to utilize multiple frames
or scans of data for tracking multiple targets in difficult
scenarios was recognized long ago, but early work fo-
cused on single target tracks, according to the survey in
[1]. The use of multiple data association hypotheses to
explain the origins of all measurements first appeared in
the late 1970s, with batch solution of the best hypothesis
by 0-1 integer programming [13], and recursive evalu-
ation of multiple association hypotheses by computing
their probabilities [14], [15]. Almost immediately, mul-
tiple hypothesis tracking (MHT) became the standard
approach for tracking multiple targets when data associ-
ation is difficult due to high target density, dense clutter,
low probability of detection, etc.

Over the past 40 years, much research has been per-
formed to generalize MHT [16] and address the inher-
ent combinatorial growth in the number of hypothe-
ses [17], [18]. The original measurement-oriented MHT,
commonly called hypothesis-oriented MHT (HOMHT),
is made practical by efficient algorithms to find the top-
ranking hypotheses [19]-[23] and compute the bounds
for the highest probabilities [24]. Track-oriented MHT
(TOMHT) [17], [25]-[29] has been proposed as a more
efficient alternative to the original HOMHT by main-
taining association hypotheses at the individual track
level and finding the best hypothesis only when needed,
using integer programming, multidimensional (MD) as-
signment, or other methods [30]-[37]. Techniques for
finding the top-ranking hypotheses are also available
[38],[39].

When sensors are physically distributed, communi-
cating measurements to a centralized tracker is often
not feasible due to network bandwidth constraints. A
distributed tracking system consists of trackers process-
ing local sensor measurements and sending the results
to another tracker for further processing. A distributed
version of MHT that communicates hypotheses was
proposed in [40]-[43]. Even though communicating
hypotheses is not practical, this research identifies issues
and techniques for associating tracks with dependent
state estimation errors caused by prior communica-
tion or common process noise [44]. A more practical
approach is communicating tracks from local trackers
[45]. When MHT is performed on multiple platforms,
the track pictures have to be consistent for distributed
decision making [46]. For tracking with a single sensor,
MHT is frequently used in a multistage architecture
[47], with the first stage removing clutter to generate
tracklets [48] of measurements that can be associated
with individual targets without ambiguity, and the
second stage associating tracklets [49].

Modern fusion systems utilize many sensors to
track large numbers of targets. For large-scale tracking
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problems, even the most efficient TOMHT implementa-
tion suffers from combinatorial explosion. Association
graphs have been proposed for implicit representation
of all association ambiguities, with tracks represented by
paths in the graph, and association hypotheses as sets of
feasible paths [S0]-[52]. When the track likelihoods sat-
isfy a Markov property, a track likelihood is a product of
pairwise association scores and the best hypothesis can
be found by efficient graph algorithms [53]-[62]. How-
ever, MHT is most useful when the Markov property is
not satisfied, e.g., when target feature data are present.
Adapting graph-based algorithms for feature-aided as-
sociation and non-Markov likelihoods is nontrivial
[63]-[68].

Standard MHT assumes one-to-one association be-
tween measurements. Since this assumption is not valid
for some tracking problems, MHT has been adapted
to handle unresolved measurements [69], [70], multi-
ple measurements from a single target [71], [72], ex-
tended objects [73], and merging and splitting targets
[74], [75]. MHT requires data association to be con-
sistent; i.e., measurements in a single scan/frame can-
not be associated independently. Probabilistic MHT
(PMHT) [76], [77] assumes independent measure-
ment associations even though it has MHT in its
name.

The computation complexity of MHT has resulted in
much research to investigate other solution techniques.
These include Markov chain Monte Carlo (MCMC) for
data association [78]-[84] and message passing/belief
propagation based on a graphical model of the tracking
problem [85]-[88].

Displaying the output of MHT to an operator has to
address track switching and jitter resulting from changes
in the best or most likely hypothesis. Although MHT
output display has not received as much attention as
algorithm research, there is some progress in this area
[89]-[92].

Detecting a target from a single frame of measure-
ments is difficult when the signal-to-noise ratio is low.
Using multiple frames to consider possible target trajec-
tories can increase the probability of detecting targets
and reduce false alarm rates. Multiple frame detection is
basically track initiation or extraction and has been per-
formed using MHT [93], [94], or with sequential proba-
bility ratio tests (SPRTs) [95]-[98].

Random finite set (RFS) for multitarget filtering has
been a very active research area in recent years [99],
[100]. Since the goal is finding the multitarget state prob-
ability density function (pdf), there is no explicit associ-
ation in the model and filter equations. Thus, RFS-based
filters appear to be different from MHT and cannot be
used for tracking or forming trajectories, at least in the
earlier forms [101]-[104]. Recent research has revealed
MHT-like structures [105]-[114] in random set multitar-
get filters. In addition, MHT can be shown to have a solid
theoretic foundation using random set formalisms [115],
[116].

MHT is used primarily in defense and security ap-
plications where data association is difficult due to the
nature of the targets. In particular, MHT is widely used
in ocean, maritime, ground, air, and space surveillance
[117]-{160]. Sensors include sonar, radar, electro-optical,
seismic, etc. Each application domain has different target
and sensor characteristics, resulting in different data as-
sociation problems that MHT has to address. Because of
the proliferation of video cameras, video tracking has be-
come a very active area of research [161]-[188]. The na-
ture of the association problem is amenable to efficient
solution by graph-based methods. Other applications
of MHT involve meteorology, astronomy, text messag-
ing, cyber security, and biological and medical imaging
[189]-[202].

This paper reviews key developments in MHT over
the past 40 years. It may be viewed as a continuation
of the tutorial in 2004 [17], and supplements the MHT
chapters in books on tracking and fusion [2]-[10]. A re-
view of this type reflects the limited knowledge and in-
evitable biases of the authors, especially given the large
number of papers related to MHT published in diverse
journals and conference proceedings. As of November
2019, [15] had 1530 citations according to IEEE Xplore
and 3434 citations according to Google Scholar. Since we
cannot include or read all references carefully, we apol-
ogize for omissions or misinterpretations and would ap-
preciate any corrections or comments on this paper.

The structure of this paper is as follows. Section 11
presents target and sensor models, and defines hypothe-
ses and tracks. Sections IIT and IV present the HOMHT
and TOMHT. Section V discusses distributed MHT
for single and multiple sensors. Section VI presents a
graph model for data association and efficient solutions
under the Markov assumption. Section VII discusses
relaxation of assumptions and extensions to MHT.
Section VIII presents the relationship between MHT
and RFS approaches. Section IX lists some applications,
and Section X concludes the paper by discussing possi-
ble research directions.

II.  MULTIPLE HYPOTHESIS TRACKING

MHT uses target and sensor models to form associa-
tion hypotheses for the origins of all measurements and
computes their probabilities. We use MHT to stand for
both multiple hypothesis tracking and multiple hypothe-
sis tracker. The specific meaning should be obvious from
the context.

A. Target and Measurement Models

The number of targets at time ¢ is N,. Each target has
a hybrid (continuous—discrete-mixture-valued) state x;.
Given N, the target states are independent and identi-
cally distributed (i.i.d.) Markov processes with transition
probability fi (x]x').
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Suppose there are K frames or scans of data taken at
ti < --- < tg. Each frame consists of 7, measurements
Zr = (z, );.”z"l, where a measurement z is independently
generated from the target state x by the pdf py(z|x) that
may depend on time and the reporting sensor. A target
at state x is independently detected according to a prob-
ability pp(x). For each k, the number of false alarms is
Nrax with some probability distribution density pra(z)
for their values.

B. Tracks and Hypotheses

A track t is a sequence of measurement indices

(jx)X_, of cumulative measurements Z;.x £ (Zk)K_ hy-
pothesized to originate from the same target, where j;, =
0 indicates no measurement or that the target hypothe-
sized by 7 is undetected. A data association hypothesis
A is a collection of tracks that explains the origins of all
measurements. In the MHT literature, it is common prac-
tice to refer to data association hypothesis as hypothesis.
If the sensor resolution is such that two targets cannot
generate one measurement, then two tracks in the same
hypothesis cannot share the same measurement.

The definitions of track and hypothesis first appear
in [13], which also views a hypothesis as a partition of
the cumulative measurements. Data association hypoth-
esis is sometimes called global hypothesis to distinguish
it from track hypothesis that concerns only association of
measurements with individual targets. We prefer to use
global hypothesis to represent the association hypothe-
sis that results from fusing local association hypotheses
in distributed tracking.

lll.  HYPOTHESIS-ORIENTED MHT

HOMHT recursively generates hypotheses on the
origins of measurements and computes the probability
of each hypothesis. In the 1970s, there was a lot of in-
terest in correlation techniques for naval ocean surveil-
lance, where association with kinematic data only is diffi-
cult because observations or contacts are sparse. Thus, it
is useful to use MHT to delay association decisions until
good feature data are available. HOMHT consists of re-
cursive generation, evaluation, and management of hy-
potheses [14], [15].

A. Hypothesis Generation

Let 1x_; be a hypothesis on the cumulative data
Z1.x-1- Multiple new hypotheses A; on Z;,; are gener-
ated by hypothesizing different associations of the mea-
surements in Z; with the tracks in A;_;. A measurement
Z,]{ may be associated with an existing track ‘L']i_ Lin Ay,
with a newly detected target, or be hypothesized as a
false alarm. A target hypothesized by an existing track
1271 in Ax_;may not be detected in Zi. This approach is
called measurement oriented in [15] because it uses pos-
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sible origins of measurements to generate new hypothe-
ses. It is commonly called hypothesis-oriented MHT be-
cause of the recursive generation of hypotheses.

B. Hypothesis Evaluation

Let Z and Z represent Z;, and Z;.,_1,and A and A be
hypotheses on Z and Z such that A is the unique prede-
cessor of A. For a track 7 in A and any frame index k' € K,
let Zy |, be the measurement in Z; specified by . If ©

has no measurement in Z, then we say Zy |, 2 0, repre-
senting a hypothesized nondetection. Let Z; be the se-
quence of measurements specified by t. Then, the prob-
ability of the hypothesis is evaluated recursively by

P(.Z) = C(Z) ' PIZ) L (Zia) [ | La(Zuge | Z1e),

TEA
(1)
where C(Z) is a normalization constant, LI (Z|1) is
the likelihood of Nrr hypothesized false alarms given by

LEN(Zilwe) = Bpir 2)

with constant false alarm density B ,,,and Li(Z, |Z7)

is the likelihood of associating Zy, = z,i with the prede-

cessor track T in A. There are three types of Lk(Z,’;|Z‘f).
1) Likelihood of zi from a previously detected target:

Li(z)1Z1c) = pouN(z), — Hi., BL.), 3)

where N(x, P) is the zero-mean normal density with co-
variance P, H; is the measurement matrix, and %, and
B,’{I are the predicted estimate and corresponding error
covariance, respectively.

2) Likelihood of previously detected target being un-
detected:

L(0IZ;) =1~ por. “4)

3) Likelihood of the hypothesized number Ny7 of
newly detected target (T 2 o):

L(Z;£|Z|¢) = BNTk- 5)

Equations (1)—(5) define the algorithm in [14] and
[15], using Poisson—Gaussian models for target dynam-
ics and sensor measurements. Those likelihoods (2)—(5)
are reformulated in [16] for more general target and sen-
sor models, without linearity or Gaussian assumptions.
When the number of targets is constant and Poisson
distributed, the target states are i.i.d. random processes,
and the number of false alarms is Poisson but not uni-
formly distributed, then the likelihoods are given by the
following:

1) False alarm likelihood:

LEA[Zy|A] = e 7rak l_[ Bra(z}). (6)
j€lrar(2)

where Jgar()) is the set of measurement indices for
the false alarms as hypothesized by A, and Vpqx =
fEM Brak(z)upm(dz) is the expected number of false
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alarms in frame k, with the measure 1), on the measure-
ment space.

2) Likelihood of z] originating from a previously de-
tected target (T # ¢):

Lu&1Ze) = [ pue(lpon0piiZiuas). ()
3) Likelihood of T # ¢ being undetected:
Li01Z) = [ (1= pocteDpeelZou(@n). @

4) Likelihood of Z]]; originating from a newly detected
target:

Li(z11Z) = /X P () PO Byr ()u(dx).  (9)

where By7i(x) = DnTrpir(x|Z)4) is the density of unde-
tected targets.

In (7) and (8), px(x|Z;) is the track state probability
distribution determined by the predecessor track 7 and
Z. When x is Gaussian, this distribution is represented
by means and covariances. The hybrid measure p is in-
troduced to handle the hybrid state with both continuous
and discrete variables. For discrete random variables, the
integral becomes a summation.

The expected number vyr of targets that remain
undetected through k frame is calculated from the ex-
pected number y7 of undetected targets in Z as

- /X [1 = pok(0)]pe(x|Zig)(dx).  (10)

The state distributions for the tracks are updated by

Pe(x1Zi) = d7 pai (1) pok(X)pic(x1Zps) - (1)
for a track t with a detection z,{, and
pi(x1Z1) =d 7 (1 — ppr(x))pr(x1Zi)  (12)

for a track T with no detection at frame k. Equation (12)
is also used to compute By7x(x), the density of unde-
tected targets. In (11) and (12), d and d’ are normaliz-
ing constants. The likelihoods (2)—(5) are a special case
with linear and Gaussian models, and uniform detection
probability.

C. Hypothesis Management or Implementation

Since the number of hypotheses grows rapidly with
the number of frames, hypothesis management tech-
niques are needed to make recursive MHT practical [15],
[17]. Common techniques are pruning low-probability
hypotheses, combining hypotheses with similar tracks,
and decomposing targets and measurements into clus-
ters [18] that can be solved independently.

Hypothesis pruning requires finding the hypotheses
with the highest probabilities. At first, heuristic meth-
ods and search techniques were used, but results were
frequently not satisfactory. HOMHT became practical

only after efficient techniques for generating the m-best
hypotheses were developed [19]-[21] using Murty’s al-
gorithm [22]. A reformation of the HOMHT [15] with
Murty’s algorithm is discussed in [23]. A method for es-
timating the bounds to the hypothesis probabilities is
given in [24]. These bounds are useful for validating the
correctness of the implementation.

When needed, the probability of a track can be com-
puted as the sum of the probabilities of all hypotheses
containing the track. Since it may be very difficult to
enumerate and evaluate all hypotheses, track probability
calculation is almost always approximate.

IV. TRACK-ORIENTED MHT

TOMHT is usually claimed to be more efficient than
HOMHT because it recursively generates only tracks
and finds the best association hypothesis only when
needed [17], [25]. Even though [25] is one of the earliest
references on the implementation of TOMHT, the con-
cept of TOMHT first appeared in [13], which uses inte-
ger programming to find the best hypothesis over a batch
of data, and a design for implementation is presented in
[26].

A. Batch Hypothesis Evaluation

The probability of a hypothesis Ax on the cumulative
data Z;.x can be computed [40] as

POk Zik) = C(Z1.x) " A (Z1x1hk) l_[ Ik(t, Z1:x),

TEAK
(13)
where C(Z1.x) is a normalizing constant, /£4(Z .| Ak ) is
the likelihood of false alarms, and Ik (t, Z.x ) is the like-
lihood of the track z given by

K
Ik(t,Z1x) =V 1_[ {/gk(zkr|X)Pk(x|Z1;(k_1)|f)H(dx)}
k=1

(14)
with the generalized likelihood gi(z|x) accounting for
detection probability, i.e.,

if z#0,
if z=26.

pmr(z1x)ppr(x),

1= por(x). =

gr(zlx) = {

Equation (13) assumes that the number of targets
is Poisson distributed. Hypothesis evaluation for non-
Poisson number of targets is discussed in [27]. This for-
mulation assumes that there are no target births and
deaths. Target appearance and disappearance are due to
entry into and exit from the sensor field of view. Ref. [28]
presents a model with target births that are never de-
tected. The dimensionless scoring of MHT is discussed
in [29].
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B. Finding the Best Hypothesis

By suppressing the time index K, and using the ap-
propriate normalization, (13) becomes

P(1Z) =C(2)' [Ti().

TEL

(16)

where C(Z) is a normalization constant. The best hy-
pothesis is then the maximum a posteriori (MAP) so-
lution for (16).

1) 0-1 Integer Linear Programming Formulation:
Taking the negative logarithm of (16) and ignoring the
normalization constant results in the following additive
cost:

JMZ) =Y (),

TEA

(17)

where ¢(t) = —Inl(z). The optimization problem is
then minimizing (17) subject to the constraint that A does
not have tracks sharing the same reports.

Let M be the number of tracks and ¢ = [cy, ..., cy]”
be the M-dimensional vector with ¢; = c(z;). A hy-
pothesis A is represented by the M-dimensional vector
x =[x, ...,xM]T,wherexj =1liftrack r; e A,and x; =0
otherwise. Then, the MAP solution is given by the inte-
ger linear programming problem

minimize ¢’x

subjectto Ax <b
and xj€{0,1} forall j e {1, ..., M},

(18)

where A is an N x M matrix with A4;; = 1 if the report
z; is included in the track 7;, and b is a vector of 1’s with
dimension N being the number of reports. The constraint
Ax < b states that tracks in a single hypothesis cannot
share the same reports.

The integer linear programming formulation first
appeared in [13], with an NP-hard exact solution. A so-
lution is usually found by relaxing the integer value con-
straint of x; and solving the standard linear program-
ming problem [30]. When the solution is noninteger,
branch-and-bound techniques are used.

2) MD Assignment Formulation: The MAP solution
can be reformulated as an MD assignment problem [31]-
[33]. Let ji be the index of measurement z;* in frame k
and z) be a dummy measurement representing nonde-
tection. A track hypothesis 7 can be represented by an
indicator function t;,_;,, where

1, if =((1,j1),.... (K jx)),

. (19)
0, otherwise,

Tjrojx =

and a measurement (index) not in any track is a false
alarm.

Letcj,. j. = c(7) be the cost of the track 7. Then, the
minimization of (17) is equivalent to the following MD
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assignment problem:

m

mg
minimize E E Ciijx T jk

(20)
1=0 jxk=0
my M1 M mg
subjectt02~-~ Z Z -~-ij1..4j,<=1 (21)
=0 Jjke1=0 ji1=0 k=0

for all j, = 1,2,..... ,mp and kK = 1,2, ... , K. Con-
straints (21) specify that each measurement can belong
to only one track. The cost cg_ ¢ is defined to be zero. If
y is defined to be the vector formed from all 7;,. ., then
(20) and (21) have the form of minimize ¢’y subject to
By =1, which is an integer linear program.

Since the exact solution of MD assignment is NP-
hard, approximate solutions are needed. Although there
are differences in the specific steps, most approximate
MD assignment techniques are based upon Lagrangian
relaxation.

TOMHT can be formulated as the maximum weight
independent set partition (MWISP) problem [34] with
a hypothesis represented by a partition. This approach
is not as popular as integer linear programming or MD
assignment because the best partition is usually found by
a greedy search procedure [35], [36].

C. Track Management or Implementation

Even though TOMHT is more efficient than
HOMHT, the number of tracks still grows rapidly
with the number of frames. Since the likelihood and
state estimate must be generated for each track, efficient
track management is essential. In addition to HOMHT
hypothesis management techniques, N-scan pruning is a
common method used in almost all TOMHT algorithms
[17], [30]. After a best hypothesis is found, the tracks
in the hypothesis are used to prune tracks that do not
share ancestor nodes with them. As in HOMHT, clus-
tering decomposes the data association problem into
independent problems. An approach for clustering for
MD assignment is described in [37].

Unlike HOMHT, TOMHT does not require hypoth-
esis evaluation at each frame. Still it is useful to esti-
mate the probability of the best hypothesis. Techniques
for finding the m-best hypotheses have been developed
for both MD assignment [38] and integer programming
algorithms [39]. The probabilities of the m-best hypothe-
ses can be used to compute the probability of a track.

V. DISTRIBUTED MHT

When sensors are physically distributed, communi-
cating all measurements to a central tracker is often not
feasible due to bandwidth constraints. In a distributed
tracking system, the local trackers process the local sen-
sor measurements and send the processing results to be
fused by another tracker. Even when the sensors are co-
located, it is sometimes desirable for each sensor to have
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its own tracker to distribute and simplify processing, es-
pecially when the sensors are of different types, such as
radar and electro-optical.

A. Distributed MHT for Multiple Sensors

Distributed tracking must address issues such as
what information should be communicated between lo-
cal trackers, and how trackers process results from other
trackers. The first distributed MHT assumes local track-
ers communicate and fuse local hypotheses and tracks
[40]-[43]. Although the approach was demonstrated on
a small distributed sensor network and validated using
real flight data, communicating multiple hypotheses is
not practical because it requires more bandwidth than
sending sensor measurements. However, this research
addresses the key issues for distributed tracking, such
as removal of redundant information in tracks and eval-
uation of track-to-track association likelihoods. Almost
all practical distributed MHT communicate a single hy-
pothesis consisting of high-quality tracks.

The potential of using MHT in a hierarchical tracking
architecture was recognized in the early days of MHT. In
fact, the ocean surveillance correlation problem that mo-
tivated MHT research involves contact reports that are
outputs from other systems. If these reports can be con-
verted into measurements with independent errors, then
MHT can process them in the usual manner. Otherwise,
some form of decorrelation is needed to remove this
dependence. The All Source Track and Identity Fuser
(ATIF) [30] uses MHT to fuse tracks from multiple sen-
sors. The first version avoids the temporal correlation
in the track reports by processing the measurements in
the tracks instead of the state estimates. The second ver-
sion decorrelates the tracks to form equivalent measure-

. . a8,0 N a8,1
ments with independent errors. Let Xk P,;Ikl, Xk

and P,‘{"z’| % be the state estimates and error covariances
of a track i by sensor s at times k; and k; with k, > k;.
Then, the equivalent measurement y; and its covariance

V,j’zi are given by

N G \lasi G Nl asi
(V/fz]) Yk = (szl\kz) lekz - (B(Yll\kl) x}vﬂllkl’ (22)

S, J\— — i —

(vkzl) '= (P;QIUQ) ' (P;clluﬂ) L (23)
The equivalent measurement represents the new in-
formation contained in the measurements of the track
between k; and k3, and is called tracklet in [48]. In this
paper, we will follow the more common definition of
tracklet as a short track consisting of measurements from
the same target. This equivalent measurement of (22)
and (23) is only approximate when the target dynamics
have nonzero process noise [44]. The distributed MHT
in [45] uses equivalent measurements from passive and

active sensors to score association hypotheses.
The concept of data frame or scan is essential to
HOMHT or recursive MHT. Since tracklets are not de-
fined at a single observation time, there is no obvi-

ous way of organizing them into frames or scans. Thus,
TOMHT is more appropriate for processing tracklets
[49]. In particular, TOMHT has a natural formulation as
graph-based association discussed in Section VI.

Due to processing differences, communication de-
lays, and failures, the MHT on multiple platforms may
produce different results. Conflicting track pictures are
problematic when they are used for distributed decision
making. An approach for maintaining a single integrated
air picture for multiple platforms is developed in [46].

B. Multistage MHT for Single Sensor

Multistage processing for single sensor tracking is ba-
sically a data compression technique with a front-end
tracker that processes the sensor measurements to re-
move clutter and generate tracks as inputs for the back-
end tracker. The back-end tracker usually does some
pre-processing such as checking the quality of input
tracks and breaking them if necessary [47].

When the front-end tracker generates pure track-
lets with little association uncertainty, the inputs to the
back-end tracker can be represented by an association
graph [50]. Then, the MHT can be solved efficiently if
some Markov assumptions are satisfied, as discussed in
Section VL.

VI.  GRAPH-BASED ASSOCIATION

Advances in sensing and communication technolo-
gies have resulted in surveillance systems with many sen-
sors collecting data on large numbers of targets. For ex-
ample, ground-based or airborne video sensors are used
to track moving vehicles in urban environments. Track-
ing with kinematic measurements alone is difficult due
to high target density, occlusion from buildings,and large
amounts of measurements. Thus, target feature observa-
tions are needed for accurate association and sparse fea-
ture data necessitate the use of MHT to maintain multi-
ple hypotheses until feature observations are received
to select the correct hypothesis. The “big data” prob-
lem is usually addressed with a hierarchical architecture
with sensors generating pure tracklets and a high-level
tracker associating the tracklets to form target tracks.
The MHT problem can then be represented as an as-
sociation graph [50], which has efficient solutions under
some assumptions [51], [52].

A. Association Graph

Representation of tracks as paths over a trellis first
appears in [53] and an efficient solution is given in [54].
However, it did not receive much attention in the tra-
ditional tracking community until recently even though
graph representation of data association is quite stan-
dard in video tracking (Section IX-E). The nodes of an
association graph are sensor reports that may be indi-
vidual measurements or tracklets (sequence of measure-
ments associated with same target with high confidence).

136 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL.14,NO.2 DECEMBER 2019



Each node is associated with a probability distribution of
the state given measurements in the tracklet.

An edge connects two nodes when the reports can
be associated with the same target. Two temporally over-
lapping tracklets from the same sensor cannot be associ-
ated. The weight of the edge represents the likelihood of
association. Since association is a bidirectional relation-
ship, the association graph is in general undirected. If the
tracklets are from the same sensor, the graph is directed
with a direction defined by the start or end times of the
nodes.

An association graph provides an efficient implicit
representation of tracks and hypotheses in MHT. A track
is a path in the track graph and an association hypothesis
is a set of consistent tracks, where consistency means that
no two tracks in a hypothesis can share a single report.
If there are no false reports, a hypothesis is a partition of
all the reports or a nonoverlapping path cover of all the
nodes.

B. Solution for Markov Association Likelihoods

Let t = (y1, ..., yx) be a track with a tracklet t; rep-
resented by its measurements y;. The likelihood of the
track t is

k-1 k-1
1(t) = ys()pei) [ [ 1) [0/ yisr),
i=1

i=1

(24)

where pg(yi) is the probability of the track ending after
Vi, vs(¥1) depends on the density of the new report y1,

v 2 (y1, ..., yi) is the partial track with reports up to y;,
[(y;)is the likelihood of y;,and [(y", y;;1 ) is the likelihood
of associating y; 1 with y'.

1) Markov Likelihoods: The association likeli-
hood satisfies the Markov property if p(yi1ly') =
pOVir1lys -oer ¥i) = p(Vir1lyi)- Then, (24) becomes

k-1 k-1

1(x) = ys)pei) [ [ 10w [ 100 yinn)-

i=1 i=1

(25)

The likelihood of a track is now the product of pair-
wise association likelihoods given by (25). The Markov
property is also called the path-independent property
because the association of nodes with a path depends
only on the last node in the path and is independent of
the rest of the path.

The Markov or path-independent property implies
p(x|y1, ..., yi) = p(x|y;); i.e., the previous reports in a
track cannot improve the estimate based only on the
current report. This is true in tracklet stitching problems
with very accurate sensors and fast target dynamics rela-
tive to the length of the tracklet [S5], e.g., video tracking.
The Markov property is not satisfied when the previous
reports can improve the estimate computed using only
the current report. Examples include raw sensor mea-
surements, feature data, and multisensor reports that can
be fused to improve the state estimate.
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2) Bipartite Matching Formulation: An association
hypothesis A on the track graph can be represented by
xj€{0,1},i=1,.,N, j=1,..,N, sothat x;; = 1if
the directed edge (y;, y;) is in A and 0 otherwise. With
the Markov assumption, taking the negative logarithm
of (16) and ignoring the normalization constant, the cost
function for the MAP solution becomes

Jx)= > ciyxij.

(i,j)eE

(26)

where ¢;; = —In(l(yi, y;)/(vs(yj)pe(yi))) and E'is the
set of edges.

The best hypothesis is obtained by finding x;; € {0, 1}
that minimizes (26) subject to the constraints that each
node i can be associated with at most one node j. This
is a bipartite matching or assignment problem. Many ef-
ficient algorithms [56] have been developed to find the
best matching or assignment. In addition, the K-best so-
lutions can be found by Murty’s algorithm [22].

3) Minimum Cost Network Flow Formulation: The
bipartite matching formulation can be converted into
the minimum cost network flow (MCNF) formulation.
In fact, the MCNF solution first appeared in [54] for find-
ing the best hypothesis for a trellis with the nodes rep-
resenting radar measurements. However, this approach
was ignored for many years because the Markov prop-
erty does not hold for problems of interest at that time.

This approach was rediscovered with video tracking,
which frequently uses a two-level architecture. The first
or low level processes video data to form tracklets and
the second or high level stitches the tracklets across oc-
clusions or confusions. The tracklet stitching problem
usually uses a track graph representation. Since the like-
lihood of associating a video tracklet with a video track
usually depends only on the last tracklet in the track,
the Markov property is satisfied and MCNF or bipartite
matching algorithms can be used to solve the problem.

Because of this nice computational property, the
Markov property is sometimes assumed in problems
where it is clearly not valid. For example, [57] uses it for
tracking with radar measurements and proposes an iter-
ative approach to improve the solutions generated un-
der the Markov assumption. Another example is multi-
ple sensor track stitching where the path independence
assumption is not valid [58]. Graph-based tracking sys-
tems with the Markov assumption have been developed
and tested on real data involving a graph with several
hundred thousand nodes.

The Viterbi data association approach of [53] is fur-
ther developed for tracking [59]-[61]. A comparison
of Viterbi-based and multiple hypothesis-based track
stitching is investigated in [62].

C. Solution for Non-Markov Likelihoods

MHT is most useful when the data from later scans
can significantly change the track likelihoods and reduce
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the association ambiguity. This is clearly not possible
with Markov association likelihoods. The performance
of graph-based techniques for track stitching is analyzed
in [63].

Graph-based solution for MHT is an active area of
research because traditional MHT cannot handle the
data volume of modern surveillance systems. While the
graph is a good representation of the association prob-
lem, standard graph analytic solutions require restrictive
assumptions such as the Markov property. Solution of as-
sociation graphs that violate the Markov assumption is
an active research area [52], [64]-[68].

VIl.  OTHER MHT RESEARCH

A. Relaxing Measurement to Target Association
Assumptions

Standard MHT assumes that a measurement in a sin-
gle frame/scan cannot originate from two targets, and
a target can generate at most one measurement in a
frame/scan. This assumption is violated when low sensor
resolution results in unresolved measurements, or high
sensor resolution results in multiple measurements per
target.

1) Unresolved Measurements: One way to handle
association of unresolved measurements with multiple
tracks is by modeling the unresolved measurements.
HOMHT is used in [69] to track closely spaced aircraft
with measurements from acoustic sensors. Before mea-
surements are associated with the predicted tracks, track
merging hypotheses are formed. The likelihood of as-
sociating a measurement with two tracks is computed
from the probabilities of track merging and detecting the
merged track, and the likelihood of associating the mea-
surement with the detected merged track. The probabil-
ity of unresolved targets is also a key component in [70],
which addresses multiple hypothesis track maintenance
for targets flying in close formation.

Unresolved measurements introduce merged track
or unresolved track hypothesis in addition to measure-
ment to track association hypothesis. Sophisticated hy-
pothesis management techniques are necessary to make
MHT practical for unresolved measurements.

2) Multiple Measurements: The sensors in some
tracking systems generate multiple measurements per
target. One such sensor is the over-the-horizon radar
(OTHR), which generates multiple detections arriving
over different propagation paths from the same target.
Another example is passive coherent localization, which
uses a single receiver to detect multiple measurements
bouncing off the target from multiple transmitters.
Different MHT modifications have been proposed to
address the multiple measurement problem. In [71], mul-
tiple measurements are viewed as detections of different
modes, with a different measurement equation for each
mode. A multiple detection multiple hypothesis tracker

(MD-MHT) is developed to associate the measurements
and estimate the mode. The MD-MHT uses MD assign-
ment and its performance is demonstrated for OTHR
tracking.

Ref. [72] addresses multiple measurements that are
modeled by the same measurement equation. The mul-
tiple measurement MHT is based on a generalization of
TOMHT recursion to handle repeated measurements.
Tracking of multiple extended objects by Poisson multi-
Bernoulli mixture (PMBM) filter, which has an MHT-
like structure (Section VIII-A.2),is discussed in [73].

3) Split and Merged Targets: The targets in some
tracking problems may split and merge, resulting in
split and merged measurements. An example is track-
ing clouds that merge and split. Handling target merge
and split requires modification of the standard MHT.
In addition to new target from birth or first detec-
tion, extension of existing track, and false alarms, [74]
also considers track split and track merge as possi-
ble origins of measurements. A different approach is
used in [75], which decomposes the target state into
kinematic/attribute state and event. The possible events
are birth, death, split, and merge. The MHT has two
steps: generating event hypotheses and data association
hypotheses.

4) Probabilistic MHT: MHT assumes that a target
can generate at most one measurement per scan. PMHT
[76] uses an assignment model that violates this as-
sumption, and allows measurement/target association
to be independent across measurements. With this as-
sumption, the optimization problem is changed from
a combinatorial problem requiring solution by integer
programming or MD assignment to a continuous opti-
mization problem that can be solved by expectation—
maximization algorithms. Even though MHT is in its
name, solving the data association problem is not the pri-
mary objective of PMHT, which also assumes the num-
ber of targets is known. The problems and some solu-
tions of PMHT are discussed in [77].

B. MCMC Data Association

It is well known that finding the best hypothesis of
TOMHT by 0-1 integer linear programming (18) or MD
assignment (20), (21) is an NP-hard combinatorial prob-
lem. Since MCMC methods [78], [79] can provide poly-
nomial time algorithms to solve the NP-hard problem
with sufficient accuracy, it is natural for MCMC to be
used for target tracking [80].

In [81] and [82], the MC transition is defined
as a combination of five “moves”: 1) birth/death, 2)
split/merge, 3) extension/reduction, 4) track update, and
5) track switch. Simulation results show that perfor-
mance is better than commonly used TOMHT algo-
rithms. MCMC is used to solve a multiple-intelligence
(multi-INT) surveillance problem with good reported
performance [66].
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In [83], three MCMC sampling designs, Metropolis
sampling, Metropolis sampling with Boltzmann accep-
tance probability, and Metropolis—Hasting sampling, are
directly applied to the 0-1 linear programming formu-
lation (18) of TOMHT. The results in terms of conver-
gence speed are not very impressive when compared
with an open-source mixed-integer linear programming
package combining the primal-dual methods with the
backup branch-and-bound method. At the suggestion by
the late Dr. Jean-Pierre Le Cadre, another sequential
Monte Carlo method known as cross entropy method
was proposed in [84]. However, no definitive conclusion
on the performance improvement was obtained.

C. Graphical Models for Data Association

Graphical models [85] are efficient representations
of joint probability distributions of many random vari-
ables by exploiting factorization such as Markov prop-
erties. Given such a representation, inference algorithms
are used to compute probabilities of specific variables or
maximize some probabilities. By representing the MTT
with a graphical model, message passing or belief prop-
agation techniques can be used to solve the data associ-
ation problem.

Ref. [86] presents message passing algorithms for
solving a class of MTT problems. Ref. [87] uses a fac-
tor graph to represent the TOMHT and variational mes-
sage passing to estimate the track probabilities. Empir-
ical evaluation shows that track probabilities computed
through message passing compare favorably to those ob-
tained by summation over the k-best hypotheses

Ref. [88] uses an MWISP formulation of TOMHT
and represents it by a graphic model. Max-product be-
lief propagation is then used to find the MAP solution.

D. MHT Output

Designing a good display for a tracking system is
always difficult because the information to display de-
pends on the information needs of the operator. Dis-
playing MHT output is particularly challenging. There
are two choices: displaying the best (M AP) hypothesis or
a combination of hypotheses. Usually the best hypothe-
sis is displayed because finding alternative hypotheses is
not easy. However, the tracks in the best hypothesis may
change abruptly as the MAP hypothesis changes. This
hypothesis hopping is very disconcerting to the opera-
tor as it results in track switching and jitter.

One way to generate smooth track estimates is by
retrodiction [89], [90]. By introducing a delay and using
a “smoothed” hypothesis, the track estimates will have
fewer discontinuities. The retrodiction approach is ac-
ceptable if the delay is small enough for the mission.

Another approach [91] finds the real-time display of
the target state estimates without any delay by mini-
mizing the mean optimal subpattern assignment metric,
which is defined in terms of the optimal subpattern as-
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signment metric [92]. Since the display involves multiple
hypotheses, the target estimates will be smoother.

E. Multiple Frame Detection and Track
Initiation/Extraction

Detecting a target from a single frame of measure-
ments is difficult when the signal-to-noise ratio is low
and clutter is high. Multiple frame detection considers
multiple candidate trajectories over the multiple frames
and selects the best trajectories to detect or extract a tar-
get track. Since MHT performs track initiation in addi-
tion to track maintenance, it is a natural approach for
multiple frame detection. The performance of MHT for
track initiation and extraction is assessed in [93] and [94],
with probability of establishing a track and number of
false tracks as performance metrics.

The detection of small moving objects in a sequence
of images is addressed in [95] by multistage hypothesis
testing, which is also abbreviated as MHT. To avoid the
complexity of standard MHT for target tracking, a se-
quential probability ratio test (SPRT) [96] is used to se-
quentially compare the statistics of two decision thresh-
olds. A similar approach is used in [97] to extract tracks
of weak but well-separated targets from high interfer-
ence. More recently, [98] derives a Bayesian SPRT with
new target density for track initiation based on the orig-
inal HOMHT [15] and compares its performance with
the classical SPRT [97], both theoretically and with sim-
ulations.

VIII.  RELATIONSHIP TO RFSs

Multitarget filtering using random set formalism has
been a very active area of research in recent years [99],
[100]. In the random set approach, both the multitarget
state and measurements are modeled as random sets.
More specifically, the multitarget state at time f; is the
random set X = {x,lc, ..., X;*} and the measurements,
which may be vectors, are the set Zy = {z}, ...., 2;*}. Al-
though RFSs are basically finite point processes allow-
ing repeated elements, the RFS formalism, which does
not allow repeated elements, is much more popular than
the finite point process formalism. An appropriate con-
cept of a pdf of an RFS X = {xq, ...., x,,} is the nth-order
Janossy measure density function

f({xlv"“axn}) =n!p(n)fn(x1,...,xn), (27)
where p(n) is the probability distribution on the num-
ber of elements, and f,(x1, ...., X,) is the joint pdf given
n elements, which is symmetric or permutable, i.e.,
for any permutation 7 on {1,...,n}, f,(x1,.....x,) =
Ja(Xa(tys oo X))

Let fik—1(Xk|Xk-1) be the RFS state transition pdf,
and fuy(Z|Xy) be the RFS measurement likelihood.
Then, the multitarget filter can be expressed by the
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prediction step

F(XilZ1g-1) =f Frr—1 (Xpe) X—1) f(Xi—11Z1:k-1 )8 X k-1,

(28)
where the integral in (28) is the set integral over the mea-
surable space of all the finite sets, and the update step

FXilZix) = [f(zlzk|zk(k71>)]*fM(Zk|Xk)f(Xk|Zl;k_(1).)
29

A. MHT-Like Structures in RFS Filters

Since explicit target trajectories or tracks are needed
in many applications, there has been much research on
deriving MHT from RFS. In particular, RFS filters are
shown to have MHT-like structures.

1) Cardinalized Probability Hypothesis Density
(CPHD) Filter: The Probability Hypothesis Den-
sity (PHD) is the density of the measure defined as the
expected number of targets within any measurable set
in the target state space. The PHD filter approximates
the predicted RFS pdf by a Poisson RFS pdf, at each
updating stage, while the CPHD filter approximates it
by an i.i.d. cluster RFS, without the Poisson assumption
on the number of targets. The PHD filter provides the
best Poisson RFS approximation in a Kullback-Leibler
divergence sense [101]. Similarly, the CPHD filter
provides the best 1.i.d. cluster RFS approximation in
Kullback-Leibler divergence sense, as proved in [102]
and [103].

Neither PHD nor CPHD provides state pdf for each
target, and the single-target state pdf cannot be inferred
from the peaks of the posterior PHD. There are attempts
to relate PHD or CPHD to MHT. For example, [104]
shows that the Gaussian mixture CPHD filter is equiv-
alent to MHT for single targets. Each Gaussian compo-
nent has a predecessor and the sequence of predecessors
forms a track.

2) PMBMFilters: A Bernoulli RFS is specified by the
probability of existence for an element and a “spatial”
pdf for the element if it exists. A multi-Bernoulli RFS is
the union of independent Bernoulli RFS components.
The multi-Bernoulli mixture in the PMBM filter rep-
resents the posterior density f(Xy|Z1.x) over the targets
that have ever been detected, with each Bernoulli com-
ponent representing a track and each mixture compo-
nent representing a data association hypothesis. The ad-
dition of Poisson component represents targets that re-
main undetected. Thus, it is reasonable to expect that the
PMBM filter will have structure similar to MHT [105].
In particular, [106] shows that the hypothesis evalu-
ation equation (3) can be derived from the PMBM filter
under the same assumptions of [15], including Gaussian—
linear kinematics and no target death, and interpreting
the new target density 8, as the unknown target den-
sity in [105]. The derivation is based on representation
by multi-Bernoulli mixtures. The relationship between

HOMHT and PMBM filter is further analyzed in [107]
by representing the multitarget pdf as a mixture of data
association hypotheses that generalize the hypotheses of
[15] by including undiscovered targets. In addition, new
target density is viewed as a birth density. The resulting
filter has essentially the same structure as the HOMHT,
and the hypothesis probability recursion equation is (3)
multiplied by a factor that represents undiscovered tar-
gets.

A Gaussian implementation of the PMBM is pro-
vided in [108], which also introduces the multi-Bernoulli
mixture (MBM) filters. The difference between PMBM
filters and MBM filters is that in PMBM filters the birth
model is a Poisson point process, while in MBM filters,
the birth model is multi-Bernoulli or multi-Bernoulli
mixture. The prediction and update equations are anal-
ogous with a minor difference in the prediction step.

The PMBM filter does not establish explicit track
continuity, which is desirable for MTT. By formulating
the MTT problem as an RFS of trajectories [109], [110]
derives PMBM trackers that estimate the trajectories,
thus providing continuity and structure similar to MHT.
Implementation of the trajectory PMBM filter is dis-
cussed in [111] and [112].

3) Labeled Multi-Bernoulli Filters: By adding a la-
bel to an individual target state, RFS-based filters ex-
plicitly maintain track continuity from entire trajecto-
ries of consecutive target states with the same label. If
one labels the Bernoulli components in the MBM fil-
ter, which is a particular case of the unlabeled case, one
gets a labeled MBM filter. If the labeled MBM filter
is written with (data association) hypotheses in which
target existence is deterministic rather than probabilis-
tic, one gets the §-generalized labeled multi-Bernoulli
(6-GLMB filter) [108, Sec. IV]. Having deterministic ex-
istence in each hypothesis implies an exponential in-
crease in the number of hypotheses (and therefore in the
number of data associations to be solved), and is thus not
desirable.

3-GLMB RFS filters [113], [114] have been used to
develop multitarget tracking filters with structure similar
to MHT. For example, the update equation for detected
targets [86, egs. (105) and (106)] can be used to illustrate
the similarity to MHT. More specifically,

FXilZix) = 3 P(e) FEMB (Xe)
=Y P(ci) ] fE0(XL),

lELk

(30)

where Ly is the set of detected targets, X! is {(xt, I})},

f@a0(Xk) is a Bernoulli pdf for each label / in Ly, and
cr is a data association vector with entries cf{, l € Ly,
and probability P(ci). According to (30), the RFS pdf
is the sum of LMB f:MB(X,) representing the RFS pdf
for each data association c, weighted by P(cx), and

f(l’rc;()(Xi) is the track RFS pdf.
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B. RFS Formalisms for MHT

There are some concerns that MHT does not have a
solid mathematical foundation because the derivations
in [13]-[16] do not use complicated mathematics. In fact,
there were even criticisms that MHT is heuristic. These
concerns are addressed in [115] and [116], which intro-
duce mathematical formalisms to support a theory for
MHT.

In particular, [116] models the set of targets as (i) a
random finite sequence, (ii) a finite point process, and
(iii) a random finite set, of stochastic processes on the
target state space over a given continuous-time interval
[t0, 00). Viewing an individual target as a stochastic pro-
cess is similar to the use of target trajectories in [110].

Using the standard assumptions on the measure-
ments, the hypothesis evaluation equation is

P(rk|Z1.x) = P(Z1.x) "' Leak (A) Lnprr (#(k )

x (]"[ LK(r)> :

TGAK

(1)

where Lg(t) is the likelihood of a track similar to (14).
However, Lgag(Xx), the likelihood of false alarms, and
Lnprk (#(Ak)), the likelihood of the cumulative num-
ber of detected targets, are more complicated unless the
number of targets and number of false alarms satisfy the
Poisson assumption. Note that the hypothesis evaluation
equation (31) is the same for all three formalisms.

IX.  APPLICATIONS

MHT has been applied to target tracking problems
that require sophisticated methods for data association.
Many of these applications are in defense and secu-
rity, where government regulations and company poli-
cies restrict publications, especially on deployed systems.
Our review will focus primarily on those published in
the open literature. Applications of MHT for tracking
ground targets, aircraft, and missiles are already dis-
cussed in [17]. We will discuss other applications such
as ocean and maritime surveillance, space situational
awareness, airborne video surveillance, video tracking,
and some unconventional areas.

A. Ocean and Maritime Surveillance

1) Ocean Surveillance: Ocean surveillance is charac-
terized by a huge surveillance region that may cover the
entire world. Relative to the size of the surveillance re-
gion, there are few targets and they do not move very
fast. The tracking problem would be easy except that few
sensors provide persistent coverage, resulting in sparse
measurements. Since kinematic measurements are not
useful for association in many occasions, feature or at-
tribute observations are valuable but not always avail-
able. The tracking problem is even more challenging for
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submarines because they are designed for stealthy oper-
ations.

Naval ocean surveillance was a very active area of
research in 1979, with [117] documenting the state of the
art around that time. Ref. [118] discusses using MHT of
[15] for ocean surveillance with a target state that in-
cludes a continuous component representing position,
velocity, and emitter parameters, and a discrete compo-
nent representing attributes such as platform or radar
identifications. An architecture for fusion of multisensor
ocean surveillance data using MHT is proposed in [119].

Submarine tracking relies largely on acoustic sensors.
A multiple hypothesis approach is proposed for concur-
rent mapping and localization for autonomous underwa-
ter vehicles [120]. The MHT approach for tracking with
passive and active sonar is discussed in [121]-[124].

2) Maritime Surveillance: Maritime surveillance is
characterized by a smaller surveillance region and many
more sensors than ocean surveillance. However, there
are more targets with high maneuverability. Maritime
domain awareness requires tracking targets and moni-
toring their behaviors [125].

One system for port surveillance fuses video and
radar data with automatic identification system (AIS)
transponder data to form composite fused tracks for
all vessels in and approaching the port using MHT.
Rule-based and learning-based pattern recognition al-
gorithms are then used to generate alerts [126], [127].

Ref. [128] discusses an MHT at the NATO Under-
sea Research Centre. An MHT that fuses radar and AIS
datais described in [129]. While the targets of interest for
ocean and maritime surveillance are surface and subsur-
face vessels, MHT has been used to estimate the number
of beaked whales [130].

B. Ground Surveillance

Ground surveillance targets include vehicles, people,
and animals, with movements in rural or urban environ-
ments. Sensors include radar, electro-optical, and others
on airborne platforms, as well as ground-based sensors
such as seismic.

1) Ground Moving Target Indicator: The utility of
airborne ground moving target indicator (GMTI) radar
for ground surveillance was demonstrated in the first
Gulf War of 1991 [131]. The large amount of data pro-
duced by GMTI radar overwhelms manual analysis and
requires automated tracking algorithms.

Ground target tracking is characterized by large
number of targets that may be close to each other. The
targets are highly maneuverable with move—stop—move-
type behavior and on-road/off-road modes. Because of
the observation geometry, the targets may be obscured
by terrain. Furthermore, the MTI radar detects targets
only when their radial velocities are above the mini-
mum detectable velocity. Coverage gaps and highly ma-
neuverable targets make data association difficult. The
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challenges of ground target tracking and available algo-
rithms are discussed in [132].

Ref.[133] describes a U.S. program to develop GMTI
tracking algorithms around 2000. The initial phase
involved four contractors using HOMHT [134] and
TOMHT. The two winning contractors later became the
main tracking algorithm developers for ground surveil-
lance in the United States. Other research in GMTI
tracking includes [135]-[138].

2) Airborne Video: The targets for tracking with air-
borne video have similar characteristics to those in
GMTI tracking. In addition, airborne video is often used
to track people. Some airborne platforms such as the
Predator have steerable sensors with narrow field of
view, while other platforms have wide-area motion im-
agery (WAMI) sensors. Since steerable sensors have nar-
row field of view, accurate tracking is crucial to control
the sensor to observe the targets. Thus, MHT is part of
a closed-loop system with both tracking and sensor con-
trol [139], [140].

A WAMI sensor can detect many targets because
of its wide field of view. When used for urban surveil-
lance, occlusion from buildings and high target density
makes data association very difficult. Furthermore, the
goal of tracking is to produce tracks (trajectories), and
not just estimating the locations, which would be very
easy for video sensors. Thus, MHT is widely used for air-
borne video tracking. Approaches include TOMHT with
integer programming [141]-[143], MD assignment [144],
and graph-based approach [145],[146]. Graph-based ap-
proach is particularly applicable because the Markov as-
sumption is valid.

C. Air and Missile Target Tracking

Air and missile targets have mostly well-defined mo-
tion models based on physics, even during maneuvers.
Furthermore, sensors such as radar or infrared search
and track do not have to contend with the occlusion
problem in ground target tracking. However, military
targets can fly in close formation, and are designed to es-
cape detection with the help of countermeasures. These
are challenges for air and missile target tracking.

The benefit of using MHT for sensor fusion in air-
borne surveillance systems was recognized very early
[147], with performance assessments made in [93] and
[94]. MHT algorithms are developed for infrared [148],
electronically scanned radar [149], and multisensor air
defense [150]. Interacting multiple models are used with
MHT to handle target maneuvers [151], [152]. Targets
flying in formations are addressed in [153]. More recent
research uses MHT with active and passive sensors for
the sense and avoid problem [45] and air surveillance
system [154], extending earlier MHT work for air traf-
fic control [155].

Missile defense is an important application for MHT
[17] because of the high target density, difficult associa-

tion problem for angle-only measurements from space
base sensors, and the need for continuous birth to death
tracking. However, very little research and development
is reported in the open literature. An exception is boost-
phase ballistic missile defense using MHT [156].

D. Space Situational Awareness

Space situational awareness (SSA) is important but
difficult due to the large number of satellites and space
debris in various orbit regimes. SSA has to discover new
objects, catalog and track resident objects, and charac-
terize tracked objects [157]. Since sensors observe space
objects with large time gaps, data association is nontriv-
ial. MHT has been recognized as a promising solution to
the space object problem [158]-[160].

E. Video Tracking

Due to the availability of low-cost video cameras,
video tracking has been a very active application area for
computer vision researchers. The goal of video tracking
is to maintain continuous tracks of targets, called objects
in the video tracking community, and infer activities and
intentions. Object tracking has to address abrupt object
motion, changing appearance patterns, nonrigid struc-
tures for humans or animals, and occlusions. Association
is usually more important than estimation because users
can locate the objects on the image.

The association problem among image frames is
called correspondence in the computer vision commu-
nity. Due to object crossing, appearance change, and oc-
clusion, correspondence using only two frames may re-
sult in incorrect correspondence. Better tracking results
can be obtained if the correspondence is performed over
several frames. Thus, MHT is a natural approach for solv-
ing the correspondence problem in video tracking.

A Bayesian multiple hypothesis approach for con-
tour grouping, edge and contour segmentation [161],
[162] leads to an efficient implementation of HOMHT
for video tracking [163], based on finding ranked assign-
ments [20], [21]. This is followed by other research on
using MHT for video tracking [164]-[187]. Besides us-
ing standard MHT, e.g., [183], most research assumes the
Markov assumption to build a track graph and uses effi-
cient solutions such as MCNEF. It is interesting to note
that most of the research is performed in universities,
unlike MHT applications in defense and security per-
formed mostly in companies and government labora-
tories. The shifting of research to academia is due to
easy access to data for algorithm development and test-
ing from community datasets [188] and low-cost camera
systems.

F. Other Nontraditional Applications

In addition to tracking traditional targets such as
ships, vehicles, planes, and people, MHT has been used
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in other applications where good data association per-
formance requires using multiple frames/scans of data.
The following are some examples:

1) Ocean eddy current tracking [189].

2) Cloud tracking [74], [75].

3) Associating asteroid observations [190].

4) Solar events tracking [191], [192].

5) Tracking text messages and information [193], [194].
6) Detection of internet worms [195].

7) Cyberattack tracking [196].

8) Cellular traffic in living cells [197].

9) Tracking in biology and medical images [198]-[202].

X. CONCLUSION

We have reviewed the main research and develop-
ment in MHT over the last 40 years. Since MHT is based
on a sound mathematical formulation of a real MTT
problem, research has focused on relaxing the assump-
tions of MHT, developing efficient implementations, and
applying to problems that require association using mul-
tiple frames or scans of data. It is interesting to note
that while almost all early research was performed in
industry or government laboratories, most recent re-
search is now performed in academia without a strong
application focus. We believe future research should be
driven by applications, since new problems may require
relaxing other assumptions, which in turn requires new
algorithms.

Most MHT algorithms assume targets have i.i.d. mo-
tion models. The independence assumption is violated
when targets move as a group, or when vehicles are mov-
ing on a single-lane road. Exploiting this dependence
should improve association performance.

MHT is designed to address difficult data association
problems by maintaining association hypotheses over
multiple frames of data. Experience with real data has
shown that when data association is too easy, MHT is
not needed, and when data association is too difficult,
MHT does not help. Research is needed to predict when
MHT is useful, which is related to computing the hypoth-
esis probability distributions. Relating MHT to RFS may
also result in algorithms that do explicit data association
only when the data are good enough for association to
make sense.

Some tracking problems cannot be solved without
using sophisticated (or full-fledged) MHT. An exam-
ple is tracking targets with frequent kinematic measure-
ments and sparse feature observations. In such situa-
tions, MHT has to maintain multiple hypotheses until
feature data are available for association. Efficient main-
tenance of hypotheses for long durations is an active
area of research.
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